If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x+66=0
a = 1; b = 20; c = +66;
Δ = b2-4ac
Δ = 202-4·1·66
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{34}}{2*1}=\frac{-20-2\sqrt{34}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{34}}{2*1}=\frac{-20+2\sqrt{34}}{2} $
| -3x+-3=2x+7 | | 2-x/x-x+3/3x=-1/3 | | x-45=23x=131 | | -22=x/3-3 | | 2x^2+20x+66=0 | | (x+1)2-3x·(x+2)=3 | | 136-2x=104 | | 10y+32=2y+56 | | 3m^2-5m=4 | | 0.4x-1.5=0.6x+11 | | 2x^2-6x-234=0 | | x^2-20x+66=0 | | (9x+5)+(13+15)=180 | | 9w+21=9w-39 | | 5/10x+0.8=4/10x-0.4 | | 5x+16.5=13.5+10 | | 80-4x=124 | | (9x+5)+(9x+5)+(13+15)=180 | | 4(x-20)+100=40 | | x3-910=-410 | | 7=-8+5x | | 16=5w=31 | | 9w-39=9w+21 | | 135=115+7x | | 1/3(9x+15)=(4x-3) | | v+14/7=3 | | -2=4+v | | -m-m=-16 | | 5/10x+0,8=4/10-0.4 | | x2-7x+28=0 | | 2x+2(9+3x)=-11 | | -3n=–4n−5 |